Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Design and optimisation of process parameters in an in-line CIGS evaporation pilot system

Identifieur interne : 000165 ( Main/Repository ); précédent : 000164; suivant : 000166

Design and optimisation of process parameters in an in-line CIGS evaporation pilot system

Auteurs : RBID : Pascal:14-0076283

Descripteurs français

English descriptors

Abstract

Substantial efforts have been made globally towards improving Cu(In,Ga)Se2 thin film solar cell efficiencies with several organisations successfully exceeding the 20% barrier on a research level using the three-stage CIGS process, but commercial mass production of the three-stage process has been limited due to the technological difficulties of scaling-up. An attempt has been made to identify these issues by designing and manufacturing an in-line pilot production deposition system for the three-stage CIGS process which is capable of processing 30 cm × 30 cm modules. The optimisation of the process parameters such as source and substrate temperature, deposition uniformity, flux of copper, indium, gallium and selenium and thickness control has been presented in this investigation. A simplistic thickness distribution model of the evaporated films was developed to predict and validate the designed deposition process, which delivers a comparable simulation compared with the experimental data. These experiments also focused on the optimisation of the temperature uniformity across 30 cm × 30 cm area using a specially designed graphite heating system, which is crucial to form the correct α-phase CIGS in the desired time period. A three-dimensional heat transfer model using COMSOL Multiphysics 4.2a software has been developed and validated with the help of experimental data.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0076283

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Design and optimisation of process parameters in an in-line CIGS evaporation pilot system</title>
<author>
<name>ZHENGFEI WEI</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Energy Conversion Laboratory (ECL), Institute of Mechanical, Process and Energy Engineering (IMPEE), School of Engineering and Physical Sciences, Heriot-Watt University</s1>
<s2>Riccarton, Edinburgh EH14 4AS</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Riccarton, Edinburgh EH14 4AS</wicri:noRegion>
</affiliation>
</author>
<author>
<name>PRABHAKARA RAO BOBBILI</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Energy Conversion Laboratory (ECL), Institute of Mechanical, Process and Energy Engineering (IMPEE), School of Engineering and Physical Sciences, Heriot-Watt University</s1>
<s2>Riccarton, Edinburgh EH14 4AS</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Riccarton, Edinburgh EH14 4AS</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Senthilarasu, S" uniqKey="Senthilarasu S">S. Senthilarasu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Energy Conversion Laboratory (ECL), Institute of Mechanical, Process and Energy Engineering (IMPEE), School of Engineering and Physical Sciences, Heriot-Watt University</s1>
<s2>Riccarton, Edinburgh EH14 4AS</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Riccarton, Edinburgh EH14 4AS</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>College of Engineering, Mathematics and Physical Sciences, University of Exeter</s1>
<s2>Penryn, Cornwall TR10 9EZ</s2>
<s3>GBR</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Penryn, Cornwall TR10 9EZ</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shimell, Terry" uniqKey="Shimell T">Terry Shimell</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Scientific Vacuum Systems Ltd. (SVS), 12 Weller Drive, Hogwood Lane Industrial Estate, Finchampstead</s1>
<s2>Berkshire RG40 4QZ</s2>
<s3>GBR</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Berkshire RG40 4QZ</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Upadhyaya, Hari M" uniqKey="Upadhyaya H">Hari M. Upadhyaya</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Energy Conversion Laboratory (ECL), Institute of Mechanical, Process and Energy Engineering (IMPEE), School of Engineering and Physical Sciences, Heriot-Watt University</s1>
<s2>Riccarton, Edinburgh EH14 4AS</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Riccarton, Edinburgh EH14 4AS</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0076283</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0076283 INIST</idno>
<idno type="RBID">Pascal:14-0076283</idno>
<idno type="wicri:Area/Main/Corpus">000119</idno>
<idno type="wicri:Area/Main/Repository">000165</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0257-8972</idno>
<title level="j" type="abbreviated">Surf. coat. technol.</title>
<title level="j" type="main">Surface & coatings technology</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Design</term>
<term>Heat transfer</term>
<term>Scaling</term>
<term>Solar cells</term>
<term>Surface treatments</term>
<term>Thickness</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Conception</term>
<term>Cellule solaire</term>
<term>Ecaillage</term>
<term>Epaisseur</term>
<term>Transfert chaleur</term>
<term>Traitement surface</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Substantial efforts have been made globally towards improving Cu(In,Ga)Se
<sub>2</sub>
thin film solar cell efficiencies with several organisations successfully exceeding the 20% barrier on a research level using the three-stage CIGS process, but commercial mass production of the three-stage process has been limited due to the technological difficulties of scaling-up. An attempt has been made to identify these issues by designing and manufacturing an in-line pilot production deposition system for the three-stage CIGS process which is capable of processing 30 cm × 30 cm modules. The optimisation of the process parameters such as source and substrate temperature, deposition uniformity, flux of copper, indium, gallium and selenium and thickness control has been presented in this investigation. A simplistic thickness distribution model of the evaporated films was developed to predict and validate the designed deposition process, which delivers a comparable simulation compared with the experimental data. These experiments also focused on the optimisation of the temperature uniformity across 30 cm × 30 cm area using a specially designed graphite heating system, which is crucial to form the correct α-phase CIGS in the desired time period. A three-dimensional heat transfer model using COMSOL Multiphysics 4.2a software has been developed and validated with the help of experimental data.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0257-8972</s0>
</fA01>
<fA02 i1="01">
<s0>SCTEEJ</s0>
</fA02>
<fA03 i2="1">
<s0>Surf. coat. technol.</s0>
</fA03>
<fA05>
<s2>241</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Design and optimisation of process parameters in an in-line CIGS evaporation pilot system</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Selected Papers from the Society of Vacuum Coaters 56th Annual Technical Conference - SVC TechCon 2013</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>ZHENGFEI WEI</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>PRABHAKARA RAO BOBBILI</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SENTHILARASU (S.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>SHIMELL (Terry)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>UPADHYAYA (Hari M.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>WALTON (Scott G.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>STOESSEL (Chris H.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Energy Conversion Laboratory (ECL), Institute of Mechanical, Process and Energy Engineering (IMPEE), School of Engineering and Physical Sciences, Heriot-Watt University</s1>
<s2>Riccarton, Edinburgh EH14 4AS</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Scientific Vacuum Systems Ltd. (SVS), 12 Weller Drive, Hogwood Lane Industrial Estate, Finchampstead</s1>
<s2>Berkshire RG40 4QZ</s2>
<s3>GBR</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>College of Engineering, Mathematics and Physical Sciences, University of Exeter</s1>
<s2>Penryn, Cornwall TR10 9EZ</s2>
<s3>GBR</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Naval Research Laboratory</s1>
<s2>Washington, DC</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Eastman Chemical Company</s1>
<s2>Palo Alto, CA</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA18 i1="01" i2="1">
<s1>Society of Vacuum Coaters</s1>
<s2>Albuquerque, NM</s2>
<s3>USA</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s1>159-167</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>15987</s2>
<s5>354000507511230270</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>14 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0076283</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Surface & coatings technology</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Substantial efforts have been made globally towards improving Cu(In,Ga)Se
<sub>2</sub>
thin film solar cell efficiencies with several organisations successfully exceeding the 20% barrier on a research level using the three-stage CIGS process, but commercial mass production of the three-stage process has been limited due to the technological difficulties of scaling-up. An attempt has been made to identify these issues by designing and manufacturing an in-line pilot production deposition system for the three-stage CIGS process which is capable of processing 30 cm × 30 cm modules. The optimisation of the process parameters such as source and substrate temperature, deposition uniformity, flux of copper, indium, gallium and selenium and thickness control has been presented in this investigation. A simplistic thickness distribution model of the evaporated films was developed to predict and validate the designed deposition process, which delivers a comparable simulation compared with the experimental data. These experiments also focused on the optimisation of the temperature uniformity across 30 cm × 30 cm area using a specially designed graphite heating system, which is crucial to form the correct α-phase CIGS in the desired time period. A three-dimensional heat transfer model using COMSOL Multiphysics 4.2a software has been developed and validated with the help of experimental data.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A65</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Conception</s0>
<s5>55</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Design</s0>
<s5>55</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Cellule solaire</s0>
<s5>56</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Solar cells</s0>
<s5>56</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Ecaillage</s0>
<s5>57</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Scaling</s0>
<s5>57</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Escamadura</s0>
<s5>57</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Epaisseur</s0>
<s5>58</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Thickness</s0>
<s5>58</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Transfert chaleur</s0>
<s5>59</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Heat transfer</s0>
<s5>59</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Traitement surface</s0>
<s5>60</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Surface treatments</s0>
<s5>60</s5>
</fC03>
<fN21>
<s1>104</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>SVC TechCon 2013 Society of Vacuum Coaters Annual Technical Conference</s1>
<s2>56</s2>
<s3>Providence, Road Island USA</s3>
<s4>2013-04-20</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000165 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000165 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0076283
   |texte=   Design and optimisation of process parameters in an in-line CIGS evaporation pilot system
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024